ZACHARY ANKNER

@ ankner@mit.edu

2 617-939-3564

www.zackankner.com

C zankner

PUBLICATIONS (* indicates primary author)

Journal Articles

• Z. Ankner*, P. Balaji, Y. Zhu, C. K. Hiew, P. Wang, and A. Gupta, "Entailsum: An entailment-based approach to aspect-based text summarization with automated aspect adaptation," IJPRAI, vol. 36, 2022.

Conference Works

- Z. Ankner*, A. Renda*, and M. Carbin, "Renamer: A transformer architecture in-variant to variable renaming," in MLSys Workshop Neurips, 2023.
- J. R. Shue*, E. R. Chan*, R. Po*, Z. Ankner*, J. Wu, and G. Wetzstein, "3d neural field generation using triplane diffusion," in CVPR, 2023.
- Z. Ankner*, A. Renda, G. K. Dziugaite, J. Frankle, and T. Jin, "The effect of data dimensionality on neural network prunability," in ICNB Workshop Neurips, 2022.

Pre-print / In-review

- Z. Ankner*, N. Saphra, D. Blalock, J. Frankle, and M. L. Leavitt, "Dynamic masking rate schedules for mlm pretraining," 2023.
- W. Brandon, A. Nrusimha, K. Qian, et al., "Striped attention: Faster ring attention for causal transformers," 2023. arXiv: 2311. 09431.

RELEVANT EXPERIENCE

Research Scientist Intern

MosaicML

📋 June 2022 – Ongoing

- Developed neural filtering technique for LLM pre-training based on hard-example-mining that improved 1B parameter model's average downstream performance by 2%.
- Led scaling experiments to profile best transformer architecture on H100s.
- Determined evaluation procedure for data-constrained LLM pretraining and determined optimal data mixture which improved 3B parameter model's average downstream performance by 3.2%.
- Demonstrated sequence-based attention masking was not necessary for LLM pre-training on concatenated sequences leading to an efficiency improvement of 9%.
- Re-implemented the DoReMi domain weighting algorithm and evaluated corresponding performance lift.
- Worked on retrieval-based pre-training approaches to improve LLMs on knowledge-intensive tasks. Implemented large-scale pre-training and efficient approximate KNN search.
- Worked on masking rate schedulers for improving masked language model pre-training which led to 1.89x speedup.

EDUCATION

Junior

MIT

📋 Sept 2001 – June 2025

GPA: 5.0/5.0 Activities:

- Co-President AI@MIT (2022-current)
- Co-Lead MIT SIPB Deep Learning Reading Group (2021-current)
- Co-Lead AI@MIT Reading Group (2021-2022)
- Member of MIT AI Alignment (2022-current)

Relevant coursework:

- Linear Algebra and Optimization
- Stochastic Processes
- Equivariant Neural Networks

SKILLS

Python PyTorch		Tensorflow	
Pre-training	Trans	formers	Spark
Research	LaTeX	Java	Javascript
Node.js Next.js		React	

REFERENCES

Jonathan Frankle

Chief Scientist, MosaicML

☑ jonathan.frankle@databricks.com

Michael Carbin

- Professor, MIT
- ✓ mcarbin@mit.edu

Amar Gupta

✓ agupta@mit.edu

Undergraduate Researcher

Programming Systems Group - MIT CSAIL

📋 October 2021 – Ongoing

- Worked on learning neural surrogates of classical programs, specifically learning a transformer-based surrogate of a CPU simulator. Designed and implemented an attention mechanism that makes transformers invariant to semantics preserving variable renamings, setting a new state of the art on the BHIVE dataset.
- Empirically investigated the effect the redundancy in the input distribution being learned has on neural network prunability.

Researcher

Amar Gupta's Lab - MIT CSAIL

📋 August 2020 – August 2021

- Developed entailment module that can integrate with any summarization model to generate zero-shot topic-oriented summaries. Achieved new state-of-the-art performance on the MulitAspect-News dataset.
- Authored research proposal to CSAIL FinTech alliance that was granted.

ML Engineer Intern Brain Power LLC

📋 June 2019 – August 2019

- Trained and implemented neural networks for facial recognition, facial emotion classification, and body pose estimation.
- Developed a data processing pipeline to retrieve streams of video data from classrooms and apply the aforementioned neural networks.